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ABSTRACT

Positive definite and semidefinite matrices induce well

known duality results in quadratic programming. The converse
:f: is established here. Thus if certain duality results hold
a for a pair of dual quadratic programs, then the underlying
matrix must be positive definite or semidefinite. For example
if a strict local minimum of a quadratic program exceeds or
equals a strict global maximum of the dual, then the underly-
ing symmetric matrix Q is positive definite. If a quadratic
program has a local minimum then the underlying matrix Q is
positive semidefinite if and only if the primal minimum
exceeds or equals the dual global maximum and xTQx = 0 implies
Qx = 0. A significant implication of these results is that
' | the Wolfe dual may not be meaningful for nonconvex quadratic
programs and for nonlinear programs without locally positive
definite or semidefinite Hessians, even if the primal second
order sufficient optimality conditions are satisfied.

AMS (MOS) Subject Classifications: 90C20, 15A63 .
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. SIGNIFICANCE AND EXPLANATION ]

4 Constrained optimization problems occur in dual pairs

' when certain "valley" conditions (convexity or positive
definiteness) are satisfied. This pairing has some very
useful theoretical and computational implications. In this
work we show the converse, namely that if a pair of problems
are connected through a duality relation then these valley
conditions must be satisfied.
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CHARACTERIZATION OF POSITIVE DEFINITE AND
SEMIDEFINITE MATRICES VIA QUADRATIC PROGRAMMING DUALITY

S.-P. Han & 0. L. Mangasarian

. l. INTRODUCTION
It is well known [3,4,11,10] that the dual quadratic

programs
(la) Minimize %—xTQx + pTx
X
subject to Ax < b
Cx =d
(1b) Maximize -3x70x - blu - d'v
X,u,v
subject to ox + ATu + ctv + p=20
u>0

where Q, A and C are given real matrices of order nxn,
mxn and kxn respectively, with Q = QT, and p, b and 4
are given vectors in the real finite dimensional Euclidean
spaces R?, R" and Rk respectively, possess many important
relations when Q is positive semidefinite or positive defi-
nite. In this paper we are interested in the converse: What
sort of duality relations between (la) and (1b) induce posi-
tive definiteness or semidefinitness in Q? A key role in
deriving these converse relations is played by the following
conjugate cone characterization of positive definite and semi-~
definite matrices [8].

1.1 Theorem [8] Let K be a nonempty convex polyhedral cone
in R®. The nxn real matrix P is positive semidefinite if
and only if P is positive semidefinite plus on the cone K
and positive semidefinite on the conjugate cone KP, that is

xeK-'xTPx?_O

(2)
TP

x'Px =0, xeK-»(P+PT)x=0

Sponsored by the United States Army under Contract No.
DAAG29-80-C~0041. This material is based on work supported by
the National Science Foundation under Grants ENG-7903881,
MCS-7901066 and MCS-8200632.
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(3) yeKP:= {yly(P+PT)x_<_o, VX ¢ K} = yTPy >0

1.2 Theorem [8] Let K be a nonempty convex polyhedral cone
in R®. The nxn real matrix P is positive definite if and
only if P is positive definite on K and KA that is:

O#xex-’xTPx> 0
Ofyexp-'yTPy> 0

With the help of these characterization theorems and the
second order optimality conditions of quadratic programming
(6,9,2,1] we show for example in Theorem 3.5 that if a strict
local minimum of a quadratic program exceeds or equals a strict
global maximum of the dual, then the matrix Q must be posi-~
tive definite. In Theorem 3.6 we show that if a quadratic
program has a local minimum then Q is positive semidefinite
if and only if the primal minimum exceeds or equals the dual
global maximum, and Qx = 0 whenever xTQx = 0, In Corollary
3.7 we show that if the primal feasible and dual feasible sets
are nonempty and if the weak duality relation holds, that is
the primal objective exceeds or equals the dual objective over
their respective feasible regions, and if Qx = 0 whenever
xTQx = 0, then Q is positive semidefinite. In [7] positive-
definiteness of the Hessian of the Lagrangian of nonlinear

- programs was established under more restrictive assumptions.

The import of these and our other results is that when
certain simple and desirable duality results are satisfied by
a pair of dual quadratic programs, then the underlying matrix
must be positive definite or semidefinite. This leads to the
conclusion that the Dennis-Dorn-Wolfe quadratié dual programs
[3,4,11) are meaningful only if the underlying matrix is
positive definite or semidefinite. For example even if the
primal quadratic problem (la) has a unique global minimum
solution (and thus satisfying the second order sufficient
optimality condition), and if the underlying matrix is not
positive semidefinite then the dual quadratic problem (1lb) may
not make sense. Thus the example

B—




minimize xi - xi subject to X, = 0

has the unique global solution X =X, = 0 but its dual

maximize xi - xg + VX, subject to Xy = 0, -2x2 +v=_0
is unbounded above. Similarly the Wolfe dual for nonlinear
programs may not be meaningful unless the Hessian of the
Lagrangian is locally positive definite or semidefinite in the
neighborhood of a stationary point of the primal problem [7].
Thus even if the second order sufficient optimality conditions
are satisfied but the Hessian of the Lagrangian is not positive
definite or semidefinite in a neighborhood of a local minimum
solution, the dual problem may not make sense.

We shall need second order optimality conditions for the
dual quadratic programs (la) and (lb) which have local and
strictly local solutions. These results can be found in
[9,2,1) which we summarize here in a convenient form. The
points (x,u,V) e R and (%,5,7,W) ¢ RBVKIR e Karush-
Kuhn~Tucker points of (la) and (1lb) respectively if they
satisfy the following respective conditions [10]

(da) Qx +AG +Cv+p=0 (4b) -Q% + QW = 0
Ax < b AW-~-b<O

Cx = d Cw-d=0 |

20 Ox + ATg + C'v + p =0 i

aT(AX-b) = 0 820 :
4T (Aw-b) = 0

Note that if (x,u,v) is a Karush-Kuhn-Tucker point of (la)
then (x,u,v,x) is a Karush-Kuhn-Tucker point of (lb). To
characterize local solutions we need to define the following
index sets associated with a Karush-Kuhn-Tucker point (X,u,V)
of (la):

- " -
,r'




-4~

J:= {ila;x=b,, u; >0}

K:= {i|a;x=b,, u; =0}

E:= JuK = {i|]a;x=Db,}

I:= {ilAix <b;, u; = 0}

The notation Ag will represent the rows A, of A with
i e¢E. We can now state the following.

1.3 Theorem [2,1] (Characterization of local solutions of
quadratic programs) A point Xxe¢ R® is local minimum solution
of the quadratic program (la) if and only if X and some
(8,%) ¢ % gatisfy the Karush-Kuhn-Tucker conditions (4a) and

(5a) Agx < 0, Cx = 0 = x70x 2 0

The Karush-Kuhn-Tucker point (x,u,v) of (la) is a local
maximum solution of the dual quadratic program (lb) if and only
if

(5b) ox + ATu + c™v = 0, (ug,u) 2 0 = x'0x 2 0

1.4 Theorem [9,2,1] (Characterization of strict local solu-
tions of quadratic programs) A point Xxe€ R" is a strict local
minimum solution of the quadratic program (la) if and only if
% and some (u,V) ¢« X gatisfy the Karush-Kuhn-Tucker
conditions (4a) and

x_<_0,Cx=0,x;‘0-0xTQx>O

(6a) Ax =0, Ay

J

The Karush-Kuhn-Tucker point (x,u,v) of (la) is a strict
local maximum solution of the dual quadratic program (1b) if
and only if

(6b) QX+ATu+CTv=o, uxgoo uI=0, (x,u,v)#O»xTQx>0.

In the next two sections we characterize positive definite
and semidefinite problems in terms of equality-constrained
quadratic programs (Section 2) and inequality-constrained
quadratic programs (Section 3). This split into equality- and

T Y e e
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inequality-constréined problems permits the statement of some-
what sharper results for the former. For simplicity we con-
fine the results of Section 3 to inequality constraints only.
Problems with both eguality and inequality constraints can be
handled in a straightforward extension of the results of
Section 3.
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2. EQUALITY-CONSTRAINED QUADRATIC PROGRAMS
We specialize here the dual problems (la) and (1b) to the
following equality-constrained dual quadratic programs

(7a) Minimize %—xTQx + pTx (7b) Maximixe - %xTQx -d%v
x x,v
14
subject to Cx=4d subject to ox + CTv +p=0

We say that a problem is feasible, if the set of points
satisfying its constraints is nonempty.

2.1 Theorem (Characterization of positive semidefinite and
definite matrices) Let (7a) be feasible.

" (i) Let (7b) be feasible. A necessary and sufficient
condition for Q to be positive semidefinite is
that (7a) has a local minimum, (7b) has a local
maximum solution and

(8) xTQx =0, Cx=0=0x=0

(1) A sufficient condition for Q to be positive
definite is that (5a) has a strict local minimum
solution and (5b) has a strict local maximum solu-
tion. This condition is also necessary if C has
linearly independent rows.

Proof (i) Necessity follows from existence and duality theory
of convex quadratic programming [5,10]. We establish suffi-
ciency now by means of Theorem 1.1. Define
(9) t= {x|Cx=0}
Then
(10) K= {ylyTQxi 0, YxeK}
= {y|yTQx> 0, Cx=0 has no solution x}
= {yIQy+CTv=O}

8ince (7a) has a local minimum solution it follows by
Theorem 1.3 (5a) and (9) that
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(11) xT0x 20 for xeK

Since (7b) has a local maximum solution, it follows also by
Theorem 1.3 (5a) and (10) that

(12) Yy Qy >0 for ye x©

Hence by (11), (8), (12) and Theorem 1.1, Q is positive
semidefinite.

(ii) (Necessity) That both (7a) and (7b) have solutions
follows from the feasibility of (7a) and the positive definite-
ness of Q. The uniqueness of solution for (7a) follows from
the'positive definitness of Q. The uniqueness of solution for
(7b) follows from the positive definiteness of Q, the linear
independence of the rows of C and Theorem 1.4 (6b).

(sufficiency) We establish sufficiency by means of
Theorem 1.2. Since (7a) has a strict local minimum solution
it follows by Theorem 1.4 (6a) and (9) that

(13) x0x >0 for 0 # xeK

Since (7b) has a strict local maximum solution, it follows also
by Theorem 1.4 (6a) that

xTQx >0 for Qx + CTv =0, (x,v) # 0

and hence by (10)

(14) yloy >0 for 0 # yeK?

Hence by (13), (14) and Theorem 1.2, Q is positive
definite. 0




3. INEQUALITY-CONSTRAINED QUADRATIC PROGRAMS
We turn our attention now to the following ineguality

constrained dual quadratic programs

(15a) Minimize ZXx'QX+p'x (15b) Maximize - 3x70x -b'u
x x,u
subject to Ax<b subject to Cx+Alu+p=0

u>0

3.1 Theorem (Characterization of positive semidefinite and
definite matrices) Let (15a) be feasible.

(i) Let (15b) be feasible. A necessary and sufficient
‘condition for Q to be positive semidefinite is
that (15a) has a local minimum solution x with
multiplier u, that (x,u) is a local maximum
solution of (15b) and

(16) X'0x = 0, A;x =0, Ax<0=0x=0

(ii) A sufficient condition for Q to be positive
definite is that (15a) have a strict local minimum
solution x with multiplier 4, and (x,u) is a
strict local maximum solution of (15b). If in
addition the rows of A, are linearly independent,
AJx =0, AKx > 0 has a solution, then this condi-
tion is also necessary.

Proof (i) Necessity follows from existence and duality theory
of convex quadratic programs. We establish sufficiency now by
means of Theorem 1.1. Define
(17) Ki= {x|A;x=0, Ayx<0} < {xlAEx;o}

Then

K= {y|yT fuloT - .

={y|y 0x20,VxeK}={y|y 0x>0,A;x=0,A. %<0, has no solution x}
={y|Qy-A§uJ-A§uK=O,uK30}

Therefore

(18) -k? ={x|ax+aTu=0, w20, u=0}




Since X is a local minimum solution of (15a) with multiplier
u it follows from Theorem 1.3 (5a) and (17) that

(19) xTQx >0 for xeK

Since (x,u) is also a local maximum solution of (15b) it
follows from Theorem 1.3 (5b) and (18) that X Qx >0 for
for x &¢-K which is equivalent to

(20) xTQx > 0 for xeK2

Conditions (19), (16), (20) and Theorem 1.1 imply that Q is
positive semidefinite.

(ii) (Necessity) That both (15a) and (15b) have solutions
follows from the feasibility of (15a) and the positive definite- -
ness of Q. The uniqueness of solution of (15a) follows from
the positive definitness of Q. The uniqueness of solution of
(15b) follows from the positive definiteness of (Q, the linear
independence of the rows of A., the existence of a solution

to AJx = 0, AKx > 0 and Theorem 1.4 (6b).

(Sufficiency) We establish sufficiency by means of
Theorem 1.2. Since (15a) has a strict local minimum solution
x it follows by Theorem 1.4 (6a) and (17) that

(21) xTQx > 0 for 0 ¥ xeK

Since (x,u) is a strict local maximum solution of (15b) it
follows from Theorem 1.4 (6b) and (18) that

(22) xgx > 0 for O # Xe K2

Hence by (21), (22) and Theorem 1.2, Q is positive
definite. 0 '

3.2 Corollary (Globalization of local dual solutions)

(i) Let X be a local minimum solution of (l5a) with
multiplier u, let (X,u) be a local maximum
solution of (15b) and let (16) hold. Then Q is
positive semidefinite and hence x is a global
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minimum solution of (15a) and (x,u) is a global
maximum solution of (15b).

(ii) Let X be a strict local minimum solution of (15a)
with multiplier u, 1let (x,u) be a strict local
maximum solution of (15b) then Q is positive
definite and hence x is a global strict minimum
solution of (15a) and (xX,u) is a global maximum
solution of (15b).

We note that condition (16) of Theorem 3.1 cannot be
dispensed as shown by the following pair of dual programs:

" Minimize X %, Maximize —X X,
subject to x, 2 0 subject to Xy-uy, =0
X, 20 x2-u1=0

(ay,uy) 20

Clearly (x,,x,) = (0,0) is a global solution to the primal
1’72
problem, (xl,xz,ul,uz) = (0,0,0,0) is a Karush~Kuhn-Tucker

point for the primal problem as well as a global solution to
the dual problem. However the underlying matrix Q = [2 %

is not positive semidefinite because condition (16) is
violated.

We establish now other duality results which induce posi-
tive definiteness or semidefiniteness. We begin by a few
preliminary results.

3.3 Lemma Let (%X,u) satisfy the Karush-Kuhn-Tucker condi-
tions of (15a). Then

(23) 2xTo% + p'% 2 - x"0x - bTu
implies that

(24) -%i’roi - bTy -%—xTQx - bTy

iv




-ll=

Proof From the Karush-Kuhn-Tucker conditions of (15a) we have
that

-X2Q%X - p'%x - b'a = 0
which when added to (23) yields (24). 8]

3.4 Lemma Let (x,u) ‘satisfy the Karush-Kuhn-Tucker condi-
tions of {(l15a) such that for all (x,u) feasible for the dual
quadratic program (1Sb)

(25) %-S':Toi + pTx 2 —%—xTQx - bl
Then (xX,u) solves (15b).

Proof Since (x,u) is feasible for the dual quadratic program
(15b) and since by (25) and Lemma 3.3

- 3%T0% - b'G 2 -3x"0x - blu
for all dual feasible (x,u), it follows that (x,u) solves
{(15b). a

3.5 Theorem (Sufficient condition for positive definiteness)
If a strict local minimum of the quadratic program (15a)
exceeds or equals a strict global maximum of the dual quadratic
program (15b) then Q is positive definite.

Proof Let u be a multiplier associated with the strict local
minimum solution of (l5a). By Lemma 3.4, (x,u) is a global
maximum solution of (15b). By assumption this global maximum
is strict. Hence by Theorem 3.1 (ii) Q is positive

definite. 8] '

3.6 Theorem (Characterization of positive semidefinite
matrices) Let X be a local minimum solution of (15a). The
matrix Q is positive semidefinite if and only if (16) holds
and for any dual feasible (x,u)

(26) %—ETQE + p'x 2 -%—xTQx - bu
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Proof Necessity follows from the duality theory of quadratic
programming and the fact that xTQx = 0 implies Qx = 0 for
any symmetric positive semidefinite matrix. To prove suffi-
ciency we note that there exists a u such that (x,u) is a
Karush-Kuhn-Tucker point of (15a) and by (26) and Lemma 3.4,
(x,u) is a global maximum solution to (16b). Hence by
Theorem 3.1 (i) Q is positive semidefinite.

Ef A direct consequence of Theorem 3.6 is the following

3 characterization of positive semidefinite matrices in terms of
}f the weak duality [10] relation of quadratic programs.

3.7 Corollary (Positive semidefiniteness via weak duality)

Let the quadratic programs (15a) and (15b) be feasible. The

matrix Q is positive semidefinite if and only if for all
o primal feasible x and all dual feasible (y,u)

2 (27) %—xTQx + pTx 2 -%—yTQy - bTu

and

(28) ' zTQz = 0=Qz=0
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